
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=lagb20

Communications in Algebra

ISSN: 0092-7872 (Print) 1532-4125 (Online) Journal homepage: http://www.tandfonline.com/loi/lagb20

Embedded Picard–Vessiot extensions

Quentin Brouette, Greg Cousins, Anand Pillay & Francoise Point

To cite this article: Quentin Brouette, Greg Cousins, Anand Pillay & Francoise Point
(2018): Embedded Picard–Vessiot extensions, Communications in Algebra, DOI:
10.1080/00927872.2018.1448848

To link to this article:  https://doi.org/10.1080/00927872.2018.1448848

Published online: 02 Apr 2018.

Submit your article to this journal 

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=lagb20
http://www.tandfonline.com/loi/lagb20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00927872.2018.1448848
https://doi.org/10.1080/00927872.2018.1448848
http://www.tandfonline.com/action/authorSubmission?journalCode=lagb20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=lagb20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00927872.2018.1448848
http://www.tandfonline.com/doi/mlt/10.1080/00927872.2018.1448848
http://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2018.1448848&domain=pdf&date_stamp=2018-04-02
http://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2018.1448848&domain=pdf&date_stamp=2018-04-02


COMMUNICATIONS IN ALGEBRA®
https://doi.org/10.1080/00927872.2018.1448848

Embedded Picard–Vessiot extensions

Quentin Brouettea, Greg Cousinsb, Anand Pillayb, and Francoise Pointc

aMathematiques, University de Mons, Mons, Belgium; bDepartment of Mathematics, University of Notre Dame,
Notre Dame, IN, USA; cFRS-FNRS, UMH, Mons, Belgium

ABSTRACT

We prove that if T is a theory of large, bounded, �elds of characteristic 0 with
almost quanti�er elimination, and TD is the model companion of T ∪ {“∂ is a
derivation”}, then for any model (U, ∂) of TD, di�erential sub�eld K of U such
that CK |H T , and linear di�erential equation ∂Y = AY over K , there is a
Picard-Vessiot extension L of K for the equation with K ≤ L ≤ U, i.e. L can
be embedded in U over K , as a di�erential �eld. Moreover such L is unique
to isomorphism over K as a di�erential �eld. Likewise for the analogue for
strongly normal extensions for logarithmic di�erential equations in the sense
of Kolchin.
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1. Introduction and preliminaries

Recent papers such as [2] and [5] have shown that under certain conditions (on the di�erential �eld
(K, ∂) and its �eld CK of constants), given a linear di�erential equation over (K, ∂) we can �nd a
Picard–Vessiot extension (L, ∂) of (K, ∂) for the equation such that CK is existentially closed in L (as
a �eld). Among the motivating examples to which this applies is the case where CK is real closed
and K is formally real. Now there is a certain complete �rst order theory CODF, which is the model
companion of the theory of formally real �elds equipped with a derivation, whereby (K, ∂) from the
previous sentence, will be embedded in a model (U , ∂) of CODF. And it is natural to ask whether for
any such model (U , ∂) the Picard–Vessiot extensions of K can be found inside U (over K)? In this
paper we prove a general result, namely the result stated in the abstract, which will yield a positive
answer.

In the casewhere the theoryT in the abstract isACF0,CK is algebraically closed,U will be di�erentially
closed, and the result (that L can be found inside U over K) is well-known. The model theoretic account
goes via prime models as follows: The prime model Kdi� of K embeds in U over K, has no new
constants, and the linear di�erential equation has a fundamental system of solutions in Kdi� as the
latter is di�erentially closed. In the more general situations such as when U is a model of CODF, this
approach has no chance of working, as there are no prime models (see [14] and also [10] which adapts
Singer’s argument to other contexts). But as it turns out we are able to combine the relatively hard abstract
existence statements from [5] with some relatively so� model theory to obtain the embedded existence
statements and this is the content of the current paper. See also Lemma 4.4 of [1] and the paragraph
following it which discuss related issues.

In the remainder of this section we give the necessary de�nitions and background. Both the model
theory and di�erential algebra in the paper are fairly basic. As a rule, L will denote the language of
unitary rings, possibly with some additional constant symbols, and L∂ will be L together with a unary
function symbol ∂ . In general variables x, y range over �nite tuples.
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2 Q. BROUETTE ET AL.

In this paper wewill only be concernedwith �elds (and di�erential �elds) of characteristic 0, although
many notions will make sense in general.

De�nition 1.1. 1. A �eld K is said to be bounded if for each n, K has only �nitely many extensions of
degree n. This is also known as Serre’s property (F).

2. A �eld K is said to be large (or ample) if for any algebraic variety V which is de�ned over K, is
K-irreducible, and has a nonsingular K-rational point, V(K) is Zariski dense in V .

Remark 1.2. 1. Large �elds were introduced by Pop in [12] where one can �nd other characterizations.
2. The class of large �elds is elementary in the language L.
3. If V is a K-irreducible variety over K with a nonsingular K-point then V is absolutely irreducible.
4. Boundedness of a �eld is preserved under elementary equivalence in the language L.
5. Suppose k is a �eld, andV is a k-irreducible variety over k. Then k is existentially closed in the function

�eld k(V) of V i� V(k) is Zariski-dense in V .

Explanation. 2 is Remark 1.3 of [12]. For 3, note that a nonsingular point on a variety V lies on exactly
one (absolutely) irreducible component. So if V is de�ned over K and a ∈ V(K) is smooth then the
(absolutely) irreducible component of V on which a lies is de�ned over K, which su�ces. 4 is folklore
and 5 is a tautology.

De�nition 1.3. Let T be a theory of �elds in the language L. We say that T has almost quanti�er-
elimination if whenever K |H T, A ⊆ K is relatively algebraically closed in K ( in the �eld-theoretic
sense), ā is an enumeration of A, and p(x̄) is the quanti�er-free type of ā, then T ∪ p(x̄) determines a
complete type.

We do not know any other papers where the notion “almost quanti�er elimination” is explicitly
discussed.

Remark 1.4. 1. Clearly “T has QE” implies “T has almost QE” implies “T is model-complete”.
2. It is routine to prove that T has almost quanti�er elimination if and only if every formula φ(x) is

equivalent modulo T to a formula of the form ∃y(ψ(x, y)) where ψ(x, y) is positive quanti�er-free
and ACF implies that the projection map from (x, y) → x is �nite-to-one on solutions of ψ(x, y).

Let us emphasize that almost quanti�er elimination is by de�nition a possible property of theories of
�elds in the ring language L (maybe with additional constants). It is important to note that the bulk of
the “nice” theories of �elds from the point of view of logic, have almost quanti�er elimination as well as
the property that all models are large and bounded: this is the case for example for RCF, Th(Qp), and the
theory of pseudo�nite �elds (where in the latter case we do need additional constants). Of course ACF
has outright quanti�er elimination. In De�nition 1.5 below we will adapt the notion of almost quanti�er
elimination to theories of di�erential �elds in the language L∂ . The analogue of Remark 1.4.2 will also
be true in this di�erential environment.

Recall that if T and T′ are theories in a given language, T′ is said to be a model companion of T if T′

is model complete and T and T′ have the same universal consequences, equivalently if the models of T′

are precisely the existentially closed models of T∀.
We now pass to di�erential �elds, which we view as structures (K,+,×,−, 0, 1, ∂) in the language

L∂ where (K,+,×) is a �eld and ∂ : K → K is a derivation. The theory of di�erential �elds has a
model companionDCF0 whichmoreover has quanti�er elimination.We can extend the notion of almost
quanti�er elimination to di�erential �elds as follows:

De�nition 1.5. Let T be a theory of di�erential �elds in language L∂ . We say that T has almost
quanti�er elimination if, whenever (K, ∂) is a model of T, A is a sub�eld which is both closed
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under ∂ as well as being relatively algebraically closed in K as a �eld, and the tuple ā enumer-
ates A and p(x̄) = q�p(ā) (the quanti�er-free type of ā) then T ∪ p(x̄) axiomatizes a complete
type.

Remember that, for a K-irreducible a�ne variety V over a di�erential �eld (K, ∂), the variety
T∂(V) is the variety de�ned by equations: P(x1, . . . , xn) = 0 and 6i=1,...,n(∂P/∂xi)ui + P∂

for P(x1, . . . , xn) in IK(V), where P∂ is the result of applying the derivation to the coe�cients
of P.

One of the reasons for the importance of the property of largeness in the current paper is Tressl’s
uniformmodel companion forT∪{“∂ is a derivation”} whenT is amodel-complete theory of large �elds,
see [15]. In this paper of Tressl, which dealt with the general case of several commuting derivations, the
axioms were rather complicated. In the case of a single derivation we can modify slightly the “geometric
axioms” for DCF0 to obtain a more accessible account. (Similar things were done in [7] for CODF and
more generally in [4] for di�erential topological �elds.)

Lemma 1.6. Let T be a model complete theory of large �elds. Then T ∪ {“∂ is a derivation”} has a model
companion which we call TD. Moreover TD can be axiomatized by T ∪ {“∂ is a derivation”} together with
the following schema: whenever V is an irreducible a�ne variety over K with a nonsingular K-point, s :
V → T∂(V) is a K-rational section of the natural projection, and U is a Zariski open subset of V de�ned
over K then there is a ∈ U(K) such that s(a) = ∂(a).

Proof. Strictly speaking we mean s(a) = (a, ∂(a)) but here and subsequently we may identify s(a) with
the second coordinate.

We give a sketch proof of the lemma. Let6 be the collection of axioms stated in the lemma.We show
that themodels of6 are precisely the existentially closedmodels of (T∪{“∂ is a derivation”})∀ = T∀∪{“∂
is a derivation”}. Let (K, ∂) be such an existentially closed model. Note �rst that K must be a model of T,
because T is ∀∃ axiomatizable and any derivation on a given �eld extends to a derivation on any larger
�eld.

Let V be an irreducible K-variety with a nonsingular K-point, and s : V → T∂(V) a K rational
section of the projection. Let a be a generic point ofV overK (in some ambient algebraically closed �eld
containing K). Then as in [8], de�ning ∂(a) to be s(a) yields an extension of the derivation ∂ on K to
a derivation, also called ∂ of K(a). On the other hand, as K is large, our assumptions imply that K is
existentially closed in K(a) as �elds, whereby for some �eld L extending K(a), K ≺ L as �elds. Extend
the derivation ∂ on K(a) to a derivation ∂ on L. So (L, ∂) is a model of T∪{“∂ is a derivation”}. As (K, ∂)
is existentially closed, for any Zariski open U of V over K there is a1 ∈ U(K) such that s(a1) = ∂(a1) as
required.

We leave it to the reader to show conversely that any model of 6 is an existentially closed model of
T∀ ∪ {“∂ is a derivation”}. (See [8].)

A nice application of the axioms is the following:

Corollary 1.7. Let T and TD be as in Lemma 1.6. Let (K, ∂) be amodel of TD, and CK its �eld of constants.
Then CK is also a model of T (hence an elementary substructure of K as �elds).

Proof. It su�ces to show that CK is existentially closed in K as a �eld. Let a be a tuple from K. We have
to show any quanti�er-freeL-formula over CK which is true of a is satis�ed in CK . LetV = V(a/CK) be
the variety over CK whose generic point is a. As CK is relatively algebraically closed in K, V is absolutely
irreducible. By de�nition a is a smooth point ofV . On the other hand T∂(V) = T(V) the tangent bundle
of V , and we have the 0-section s0 : V → T(V) (de�ned over CK). So for any Zariski open subset U
of V de�ned over CK , the axioms give us a1 in U(K) such that ∂(a1) = 0, namely a1 ∈ U(CK). This
su�ces.
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Remark 1.8. Singer’s theory CODF introduced in [14] is, on the face of it, a theory in the language of
ordered di�erential �elds, but it is easy to see that it coincideswith the expansion ofRCFD by the ordering
de�ned by ∃z(y − x = z2).

We now pass to di�erential Galois theory. We recommend the survey paper [13] as a reference
(especially as the notation is similar). By a linear di�erential equation in vector form over a di�erential
�eld (K, ∂)wemean something of the form ∂Y = AY where Y is a column vector of unknowns of length
n and A is an n × nmatrix over K. A fundamental system of solutions of this equation in a di�erential
�eld L extending K is by de�nition a set of solutions Y1, ..,Yn with coe�cients from L which is linearly
independent overCL. This equivalent to the n×nmatrix whose columns areY1, ..,Yn, being nonsingular
(i.e. nonzero determinant). So a fundamental system is precisely a solution to ∂Z = AZ where Z is an
unknown n × nmatrix in GLn.

A Picard–Vessiot extension of K for the equation is by de�nition a di�erential �eld extension L of K
which is generated over K by a fundamental system of solutions, and such that CL = CK .

A generalization of linear DE’s and the Picard–Vessiot theory is Kolchin’s strongly normal theory
(appearing in the book [6] for example). The group GLn is replaced by an arbitrary connected algebraic
group G over the constants CK of a di�erential �eld K. The equation ∂Z = AZ on GLn is replaced
by ∂z · z−1 = a, where z ranges over G, a ∈ LG(K), and the product ∂z · z−1 is in the sense of the
tangent bundle TG of G (also an algebraic group). Here LG is the Lie algebra of G. When G = GLn,
∂z · z−1 is precisely the product (∂Z)Z−1 of n × n matrices, so an equation ∂z · z−1 = A is precisely
∂Z = AZ.

In any case we write dlogG(z) for the map from G to its Lie algebra, taking z to ∂z · z−1. A strongly
normal extension of K for a logarithmic di�erential equation dlogG(z) = a on G over K is by de�nition
a di�erential �eld extension L of K generated over K by a solution g ∈ G(L) of the equation and with no
new constants. So when G = GLn this is precisely a Picard–Vessiot extension.

When CK is algebraically closed, it is well-known that strongly normal extensions of K (for a given
logarithmic di�erential equation over K) exist and are unique up to isomorphism over K as di�erential
�elds.

Building on and generalizing work in the Picard–Vessiot case [2, 3], the following was proved
in [5].

Fact 1.9. Suppose that K is a di�erential �eld, G a connected algebraic group over CK , and

dlogG(z) = a (∗)

is a logarithmic di�erential equation on G over K. Then
1. Suppose that CK is existentially closed in K as �elds. Then there exists a strongly normal extension of

K for (∗).
2. Suppose in addition that CK is large and bounded. Then there is a strongly normal extension L of K for

(∗) such that CK is existentially closed in L as �elds.
3. Suppose in the context of 2 that L1, L2 are strongly normal extensions of K for (∗) and that there are �eld

embeddings over K of L1, L2, respectively into a �eld L such that CK is existentially closed in L. Then L1
and L2 are isomorphic over K as di�erential �elds.

Remark 1.10. 1. Let k be any �eld (of characteristic 0). Noting that k is existentially closed in the �eld
k(x) of rational functions over k, it follows that 1 above applies to the di�erential �eld (K, d/dx), where
K = k(x).

2. As pointed out to us by Omar Leon-Sanchez, in Fact 1.9, 2 and 3 above we can drop the assump-
tion that CK is large when dealing with linear di�erential equations and Picard–Vessiot exten-
sions, basically because the set of k-points of a connected linear algebraic group over k is always
Zariski-dense.
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2. Main results

In this section we will prove the main theorem of the paper:

Theorem2.1. Let T be a theory of large, bounded �elds with almost quanti�er elimination (in the language
L of unitary rings possibly with constants). Let (U , ∂) be a model of TD, and let K be a di�erential sub�eld
of U , such that the �eld CK of constants of K is a model of T. Let dlogG(z) = a be a logarithmic di�erential
equation over K (with respect to a connected algebraic group G over CK). Then we can �nd a strongly
normal extension L of K for the equation which is a di�erential sub�eld of U . Moreover any two such L’s
are isomorphic over K as di�erential �elds.

Remark 2.2. 1. The fact that the equation dlogG(z) = a has a solution in G(U) is an immediate
consequence of the axioms in Lemma 1.6. The main point of Theorem 2.1 is that there is a solution g
in U such that K(g) has no new constants.

2. Note that a special case of the theorem is when T = ACF0 in which case TD = DCF0. But as
mentioned in the introduction this is known directly.

3. Let us mention roles played by the various hypotheses in Theorem 2.1. Largeness and boundedness
are the assumptions on the �eld of constants in Fact 1.9, 2, which yield a strongly normal extension L
of K such that CK is existentially closed in L. Largeness is also needed for the existence of the model
companion TD. Almost quanti�er elimination of T is used (in Lemma 2.3 below) to obtain almost
quanti�er elimination of TD, which a�er replacing K by its relative algebraic closure inside U , allows
us to �nd L inside U .

The following lemma will be an important ingredient.

Lemma 2.3. Suppose that T is a theory of large �elds and has almost quanti�er elimination. Then TD has
almost quanti�er elimination (see De�nition 1.5).

Proof. Let ā be a in�nite tuple in a model K of TD which enumerates a relatively algebraically closed
(in the �eld sense) di�erential sub�eld of K, and let p(x̄) be the quanti�er-free type of ā. We show that
p(x̄) axiomatizes a complete type modulo TD by a standard back-and-forth argument inside saturated
models.

So let K1 and K2 be saturated models of TD and b̄, c̄ realizations of p(x̄) in K1,K2, respectively. As T
has almost quanti�er-elimination and the L-reducts of K1, K2 are models of T it follows that

(∗) b̄ and c̄ have the same L-type, and moreover each is relatively algebraically closed in K1,
respectively, K2.

Now let d be an element of K1 and let d̄ be an enumeration of the relative (�eld-theoretic) algebraic
closure in K1 of the di�erential �eld generated by b̄ and d. For the back-and-forth argument to work it
will su�ce (by symmetry) to �nd ē in K2 such that the partial L∂ -isomorphism taking b̄ to c̄ extends to
one taking d̄ to ē. And for this it will be enough (by saturation of K2) to realize in K2 any �nite part of
the copy over c̄ of the quanti�er-free L∂ -type of d̄ over b̄.

Hencewehave reduced the argument to showing the following (whered has nowadi�erentmeaning):

Claim. Let φ(x) be a quanti�er-free L∂ formula over b̄ which is realized in K1 by a �nite tuple d. Then
the copy of this formula over c̄ is realized in K2.

Proof of claim. This is an adaptation to the current context of a well-known argument (see the proof of
Proposition 5.6 in [9]). The formula φ(x) is of the form ψ(x, ∂x, . . . , ∂(r)x) for some r and quanti�er-
free L-formula ψ over b̄. Let d1 = (d, ∂(d), .., ∂(r)(d)), and let e1 = ∂(d1). Let V1 be the algebraic



6 Q. BROUETTE ET AL.

variety over b̄ whose generic point is d1. As b̄ is relatively algebraically closed in K1, V1 is absolutely
irreducible. Moreover (d1, e1) ∈ T∂(V1). Likewise if W1 is the variety over b̄ whose generic point is
(d1, e1), then W1 is absolutely irreducible. By Corollary 1.7 of [8] there is f1 rational over b̄, d1, e1 such
that ((d1, e1), (e1, f1)) ∈ T∂(W1). So we can write (e1, f1) = s1(d1, e1) for some b̄-rational section s1 of
the projection π : T∂(W1) → W1.

Now from (∗) b̄ and c̄ have the same L-type in K1, K2, respectively. So without the loss of generality
the L-elementary map h : b̄ → c̄ extends to an isomorphism (of �elds) which we also call h : K1

∼= K2.
We let V2,W2, s2, d2, e2, f2 be the images of V1 etc. under h. Then (d2, e2) is a generic point ofW2 over
c̄, s2 is a c̄-rational section of the projection T∂(W2) → W2, and s2(d2, e2) = (e2, f2). Hence the axioms
for TD from Lemma 1.6, together with saturation of K2, imply that there is a generic point (d3, e3) ofW2

over c̄, such that s2(d3, e3) = ∂((d3, e3)). But note that s2(d3, e3) is of the form (e3, f3), which implies that
e3 = ∂(d3).

The upshot is that the L-type of (d3, e3) over c̄ is the image under h of the L-type of (d1, e1) over b̄.
As ∂(d1) = e1 and ∂(d3) = e3, it follows immediately that the image of φ(x) under h is realized in K2,
yielding the claim, as well as the lemma.

Remark 2.4. Lemma 2.3 could also be obtained using Theorem 7.2 (iii) of [15] and Remark 1.4.2 above.
Namely assuming T to have almost quanti�er elimination, add new relation symbols for the formulas
∃y(ψ(x, y)) appearing in Remark 1.4.2, to obtain a de�nitional expansion T∗ which has quanti�er
elimination in the new language L∗. Then the aforementioned result of Tressl is essentially that T∗

together with the axioms 6 from 1.6 has quanti�er elimination in L
∗
∂ . This translates into saying that

TD has almost quanti�er elimination, as required [4].

Proof of Theorem 2.1. Let (U , ∂) be a model of TD, K a di�erential sub�eld such that CK |H T, and let
dlogG(−) = a be a logarithmic di�erential equation over K (where G is a connected algebraic group
over CK). We want �rst to �nd a strongly normal extension L of K for the equation which is contained
in U (equivalently embeds in U over K as a di�erential �eld).

Claim.Wemay assume that K is relatively algebraically closed in U .

Proof of Claim. Let K1 be the algebraic closure of K in U as a �eld. It is clear that K1 is also a di�erential
sub�eld of U . Now it is well-known that CK1 is contained in the algebraic closure of the �eld CK .
(If a ∈ CK1 and P(x) is the minimal polynomial of a over K, then by applying ∂ to P(a) and using
that a is a constant, we see that P has coe�cients in CK .) But CK being an elementary substructure of CU

implies that CK is algebraically closed in CU . Hence we see that CK1 = CK . But then a strongly normal
extension of K1 inside U (for the equation) gives rise to a strongly normal extension of K inside U .

Now, as CK is a model of T, it is large and bounded. Hence Fact 1.9.2 gives us a strongly normal
extension (L, ∂) of (K, ∂) for the equation such that CK is existentially closed in L as �elds. It follows that
(L, ∂) is a model of T∀ ∪ {“∂ is a derivation”}. Hence (L, ∂) extends to a model (L1, ∂) of TD.

Now as K is relatively algebraically closed in the model (U , ∂) of TD, by Lemma 2.3 it follows that (an
enumeration of ) K has the same L∂ -type in (U , ∂) and (L1, ∂). In other words (∗∗) the structure (U , ∂)
with names for elements of K is elementarily equivalent to the structure (L1, ∂)with names for elements
of K.

Let L = K(g) where dlogG(g) = a. Then by Lemma 2.2 of [13] the quanti�er-free L∂ -type of g over
K (equivalently the complete type of g over K in DCF0) is isolated by a (quanti�er-free) formula φ(y)
say. (One can also just use the fact that L has to live inside some di�erential closure of K.) Note that if
α is a solution of φ(y) in some di�erential �eld extension of K, then K(α) is isomorphic to L over K (as
di�erential �elds), in particular K(α) is also a strongly normal extension of K for the equation. But by
(∗∗) the formula ∃yφ(y) over K is true in U . So this gives us the required strongly normal extension of
K inside U .
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The uniqueness part of Theorem 2.1 follows from part 3 of Fact 1.9, as if L1 and L2 are both strongly
normal extensions of K inside U , then we already have embeddings (as �elds) of L1 and L2 over K into
a �eld in which CK is existentially closed.
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